Approximate general and explicit solutions of nonlinear BBMB equations by Exp-Function method
نویسندگان
چکیده
In this work, we implement a relatively new analytical technique, the Exp-Function method, for solving special form of generalized nonlinear Benjamin–Bona–Mahony–Burgers equation (BBMB) which may contain high nonlinear terms. This method can be used as an alternative to obtain analytic and approximate solutions of different types of fractional differential equations applied in engineering mathematics. Some numerical examples are presented to illustrate the efficiency and reliability of Exp-Function method. It is predicted that Exp-Function method can be found widely applicable in engineering. 2008 Elsevier Inc. All rights reserved.
منابع مشابه
Thermo-mechanical nonlinear vibration analysis of fluid-conveying structures subjected to different boundary conditions using Galerkin-Newton-Harmonic balancing method
The development of mathematical models for describing the dynamic behaviours of fluid conveying pipes, micro-pipes and nanotubes under the influence of some thermo-mechanical parameters results into nonlinear equations that are very difficult to solve analytically. In cases where the exact analytical solutions are presented either in implicit or explicit forms, high skills and rigorous mathemat...
متن کاملAPPLICATION OF EXP-FUNCTION METHOD TO THE (2+1)-DIMENSIONAL CALOGERO BOGOYAVLANSKII SCHIFF EQUATION
In this paper, the Exp-function method, with the aid of a symbolic computation system such as Maple, is applied to the (2+1) -dimensional Calogero Bogoyavlanskii Schiff equation. Exact and explicit generalized solitary solutions are obtained in more general forms. The free parameters can be determined by initial or boundary conditions. The method is straightforward and concise, and its applicat...
متن کاملConvergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral Equations
In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملNonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008